Appendix 5-4
Coal Pillar Safety Factor Calculations

COAL PILLAR SAFETY FACTORS

Methods used to calculate coal pillar safety factors appear in Appendix 12-1. Average uniaxial compressive strength (C_p) and overburden pressure gradient (S_v) values used in section 12.3.2 are used in calculation of right-of-way safety factors.

EQUATIONS:

Pillar Strength (C_p) : $C_p = C (.778 + .222 (W/H))$

C = Coal Uniaxial Compressive Strength

W = Width of Pillar

H = Height of Pillar

Recovery Factor (R): $R = A_0/A_t$

 A_0 - Area of Entry

At = Total Area

Safety Factor (F.S.): F.S. = C_p (1-R)/ S_v

 S_v - Vertical Stress - 1 psi/foot of overburden

CALCULATIONS:

Eastern end of the right-of-way (area with smallest pillar height):

Criteria: H = 5 feet

 $S_v = 1650 \text{ psi}$ C = 2200 psiW = 60 feet

Pillar length = 140 feet

Pillar centers = 80 and 160 feet

 $C_D = 2200(.778 + .222(60/5)) = 7572 \text{ psi}$

 $R = 20(80+140)/80\times160 = .34$

F.S. = 7572(1-.34)/1650 = 3.03

Western end of the right-of-way (area with greatest pillar height):

Criteria: H = 9.6 feet $S_v = 1700 \text{ psi}$ C - 2200 psi

W= 60 feet

Pillar length = 140 feet

Pillar centers = 80 and 160 feet

 $C_p = 2200(.778 + .222(60/9.6)) = 4764 psi$

 $R = 20(80+140)/80\times160 = .34$

F.S. = 4764(1-.34)/1700 = 1.85

Average right-of-way pillar height and overburden:

Criteria:

H = 7.16 feet $S_v = 1500 \text{ psi}$ C - 2200 psi W = 60 feet

Pillar length - 140 feet

Pillar centers = 80 and 160 feet

 $C_p = 2200(.778 + .222(60/7.16)) = 5804 psi$

R = 20(80+140)/80x160 = .34

F.S. = 5804(1-.34)/1500 = 2.55